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A theory is described which, for any universal structure invariant or structure seminvariant, 4, is able to 
arrange the set of reflexions in shells, each shell a subset of the succeeding one, with the property that q~ may 
be estimated in terms of the magnitudes constituting any shell. The theory uses the idea that numberless 
representations exist of any universal structure invariant or seminvariant, each of them able to contribute 
to the estimate of 4. 

Introduction 

The joint probability distribution of a set of n normal- 
ized structure factors was first introduced by Haupt- 
man & Karle (1953). The importance of their work lies 
in the introduction of the idea that a certain phase or 
combination of phases may be calculated when other 
related structure factors have their observed values. 

A crucial result for the probabilistic approach to the 
phase solution was the discovery of the properties of 
the invariant and seminvariant phases. Hauptman & 
Karle (1956, 1959) showed that in any space group 
linear combinations of phases exist whose cosines are 
in principle fixed by the [El magnitudes alone (universal 
cosine invariants) or by the [Ers and the trigonometric 
form of the structure factor (cosine seminvariant). 
Thus the individual phases are uniquely determined 
by the values of the cosine invariants and seminvari- 
ants. This result greatly stimulated the calculation of 
the conditional distribution functions 

P(~IR,,. . . ,R,,),  

sequences for the same seminvariants or universal 
structure invariants exist. It seems then useful to 
have a theory which is able, for any universal struc- 
ture invariant or structure seminvariant, to arrange in 
a general way the set of the reflexions in a sequence of 
subsets whose order is that of the expected effectiveness 
(in the statistical sense) for the estimation of 4. The 
description of such a theory is the first aim of this paper. 
In particular, the theory introduces the idea of the 
upper representations of a universal structure invariant 
or structure seminvariant. It will lead us to organize 
the set of reflexions in a sequence of subsets, each con- 
tained in the succeeding one, which does not coincide 
in general with the corresponding nested neighbour- 
hood sequence given by Hauptman. These subsets will 
be called phasing shells in order to stress this difference. 

The theory of the representations has given the 
author new insights into direct methods of phase deter- 
mination and has already proved to be a fruitful field 
of investigation (Giacovazzo, 1976a, 1977a, b, c). Future 
publications will deal with the practical applications 
of these ideas. 

where q~ is a seminvariant or invariant phase and Rj is 
the modulus of the j th  normalized structure factor Ej. 
It has also become clear that the nature and the de- 
pendence of q~ on the fixed magnitudes R are strongly 
related to the mutual correlation of the magnitudes. 
Therefore, a properly chosen set of structure factors 
must be identified in order to obtain reliable estimates 
of cos q~. Obviously this set is not unique. In general, 
several sets may be found, each of them giving rise to a 
different dependence of tb on the selected magnitudes. 

The formulation of the 'nested neighbourhoods 
principle' first fixed the idea of defining a sequence of 
sets of reflexions (sequence of nested neighbourhoods), 
each contained within the succeeding one and having 
the property that the cosine invariant or seminvariant 
may be estimated via the magnitudes constituting any 
neighbourhood. 

Heuristic methods of finding sequences of nested 
neighbourhoods for certain universal structure invari- 
ants or structure seminvariants have recently been 
presented by Hauptman (1976). However, different 

Abbreviations 
u.s.i.=universal structure invariant, s.s.=structure 

seminvariant. 

1. Preliminary def'mitions 

Let { W} be the set of the R magnitudes provided ex- 
perimentally by diffraction or suitably chosen by the 
crystallographer. { W} will be called the sample space. 
Define the n-fold Cartesian product 

(c}.= {w} x {w} ×...x {w} 

to be the collection of all ordered n-ples 

(Rhl ,Rh2, . . . ,Rhn) (1) 

where ha, h2,. . . ,  hn are reciprocal vectors. Suppose next 
that the subset {Q}, of the points in {C}, consists of all 
the n-ples (1) for which 

( b = Z  AitPhi [ A , - 0 ( m o d  1)], (2) 
l i  
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is a s.s. for the actual space group. Of course 

:~ A i = n .  
l i  

Thus the sets {Q }1, { Q } 2, { Q } 3,... may be formed. 
For every set {Q}, there is associated the set {S}. 

which is the collection of the linear combinations of 
phases 4) defined by (2). 

A subset of {Q}, is the {P}, set which consists of all 
the n-pies (1) for which 

Aihi=0 [ i = l , . . . , t ; A i - 0 ( m o d l ) ] .  

For every set {P}, there is associated the set {U},, 
which is the collection of the linear combination of 
phases which are u.s.i. 

For the sake of clarity we observe that {P} 3 coincides 
with the E1 +Z2 listing, {P}4 with the quartet listing, 
{Q}2 with the listing of the two-phase seminvariants, 
etc. 

Let 

2. A general phase-interrelationship principle 

t 

4)J = Z Aiq)hi ' J = 1,..., n, 
l i  

be n u.s.i, or s.s. for the actual space group which satisfy 
the condition 

~ B~ ~ Aiq~h,- a (mod 2rc) , 
l j  l i  

where a and the B's are fixed values. The 4)'s may in 
general belong to different subsets {S}, and { U},. 

Denote now by {R}j, j =  1 .... n, n subsets of the 
sample space {W} such that any distribution of the 
system 

Pa(4)x ] {R}I) (3a) 

P2(4)21 {R}2) (3b) 

P,(4), I {R},) (3n) 

can in principle be different from 1/2re. Furthermore, 
the intersections 

{U}i ~ {R}j, i,j= 1,...,n, 

may or may not be the empty set. Denote next by {R}v 
the set union 

{R}v={R}I , {R}2 w . . . .  {R},,. 

If {R}v does not coincide with {R}~ then 

PI(4)I I{R}u) (4) 

will not coincide in general with PI(4)1 I{R}a) and it is 
able to provide estimates of q)l more accurate (in the 
statistical sense) than those given by (3a). 

This principle may be justified by observing that, 
from the probability densities (3) the supplementary 
probability density 

P(B14)l + B24)2 +... + B,4), I {R}v) 

arises, which is a two-valued function. It equals unity 
when 

B14)1 + B24)2 + ... +B,4),==-a (mod 2n), 

and zero in all other cases. In other words, if 
4)2, 4)3,..., 4), are contemporaneously estimated via the 
sets {R } 2, {R }3,..., {R },, a consequent effect is the phase 
indication 

B14)x = a - -  B 2 ~ 2  - - . - . -  B,,(/),, 

which is supplementary to that given by (3a). 

3. The first representation of a s.s. 

Let us denote by Cp-(Rp,  Tp), p =  1,...,m, the m sym- 
metry operators (Rp rotation component, Tp transla- 
tion component) of the actual space group and suppose 
that 

~ = A l ~ h l  + A 2 t P h  2 + . . .  +An(Ph n (5) 

be a s.s. Let us suppose that at least one phase q~h and 
two symmetry operators Cp and Cq exist in principle 
(Rh may be or may not be experimentally measured) 
such that 

=4)' I//1 + q)hRp - -  (DhRq 

= A 1 qgh 1 as + A 2 q)h211t + " "  "~- AnqghnRv + qgha t, --  q~hnq (6) 

is a u.s.i.. 4) is then a s.s. of first rank. The collection of 
the s.s.'s of first rank will be denoted by {S~}~, where 
v=AI+A2+. . .+A , ;  obviously {Si}ve{S}~. The set 
{S}v-{S}, may or may not be the empty set. For 
example, in P2 all the s.s.'s are of first rank. In fact, in 
this space group 4) is a s.s. if 

Denoting 

we have 

~', Aihi - 0 m o d  (2, 0, 2). 

R 1 =I ,  R 2 -  

T o o  
0 1 0  
0 0 T  

h(l - R2) ~ 0 mod (2, 0, 2), 

from which (6) may be easily stated by choosing 
Rv=I, Rq=R2. 

As a further example, q~_h~as+b2a,,+q~h1_h2 is a s.s. 
of first rank for all the space groups which have the 
symmetry operators Cs and C~ (Giacovazzo, 1977b, c). 
The vectors h and the expressions of 4)' for which ~u 1 
is a u.s.i, are defined by 

(a) ~)t~-~-q)-hiRs+h2Rv-~-~l)(hl-h2)Rv; 
h=hl  +k; Rp=R~; Rq=Rs; 

k is a vector for which k (R~-Rs )=0 ;  

(b) 4)'=q~-hlRs+h2n~+q~thl +h2)k,; 
h = h 2 + k ;  Rp=Rs;  Rq=R~; 

k is the same vector as in (a). 
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If the condit ions (a) and (b) hold we obtain the 
respective invariants 

7' '1  = q) - h l R s  + h2Rv + q)(h 1 - h2)Rv + (P(hl  +k)Rs - -  (P(hl + k ) a v  

I / /7 = (/0 _ h 1Rs + h2Rv -~- q)(h 1 - h2)Rs -'~ (P(h2 + k)Rs - -  (P(h2 + k)Rv • 

We note in (6) that  7"~ differs from ~b by a constant  
which arises because of the t ranslat ional  symmetry.  
In fact, as 

('Dha : q)h - -  2rthT, (7) 

then 

7"1 - q~ = - 2rt[A 1hiTs + A 2h2Tt + . . .  + A,,h,T,. 
+ h ( T p -  Tq)], 

which is a constant  if the t r igonometr ic  form of the 
structure factor has been fixed. 

Suppose now that  q~ is a s.s. for which (6) cannot  be 
stated: two phases cph and ~p~ and four symmetry  
operators  Cp, C,~, C~, C~ exist in principle (Rh and Rt may 
or may not be experimental ly measured) such that  

7" 1 = (Dr + (PhRp - -  (PhRq + (PlRi - -  (#IRj 

= A 1 (DhlRs + . . .  -~- Anq~hnRv + q)hnp  - -  q)hRq "~- q)lRi - -  (PiRj (8 )  

is a u.s.i., q~ is then a s.s. of second rank. The collection 
of the s.s.'s of second rank will be denoted by {S~l}v, 
where v= A1 + Az + . . .  + A,;  obviously {Sn}~ ~ {S}~. 

As an example, the reader will easily verify that  in 
P212121 the s.s.'s for which 

~_~ Aihi=_ O rood (0,2,2) 

A i h i - O  mod (2,0,2) 
o r  

Aihi - 0 mod (2, 2, 0) 

are of first rank, whereas s.s.'s for which 

~_~ Aihi=-O m o d  (2,2,2) 
are of second rank. A short  survey of the rank of the 
s.s.'s in all the space groups is made in the Appendix. 

We conclude by stating that  each element of the set 
{S~}v has its first representat ion (or representat ion of 
first order) in the set {U}v+2. Each element of the set 
{SI~}~ has its first representat ion in the set {U}~+4. 
More  precisely, the first representat ion of a s.s. of first 
rank q~ e {S}~ is the collection of the  u.s.i.'s 7"~ s { U}~+ 2 
which are carried out by means of (6). The first repre- 
sentation o f a  s.s. of second rank <b s {Su}~ is the collec- 
tion of the u.s.i.'s 7"1 ~ {U},.+, which are carried out 
by means of (8). We will denote the first representat ion 
of a s.s. q~ by { 7"} 1, and the generic element of { 7"}1 by 
7 " t .  

In accordance with this notat ion,  for example, the 
first representat ion in P]- of the two-phase s.s. of first 
rank q~ = cph + k + ~Ph- i, coincides with the collection of 
the two quarte t  invariants 

7"tl = (])h + k At- (~h - k -- q~h -- q)h, 
7''; = Oh + k -- ~Oh - k -- ~Ok -- Ok • 

Again, the first representat ion in P i  of the three-phase 

s.s. 4) = ~0h + ~ok + ~0h + u + 21 is the collection of the four 
quintet  invariants 

7' '1 ---- ~0h + q~k + 2q) l  - -  q~h + k + 21 ,  

7"t' = - q)h + q~k + 2~ph + I -- Cph + k + Zl, 

7 ' ' / '  = (ph - -  (pk + 2 (pk  +1 - -  (ph +k  + 21 , 

7" ; "=  - q~h - ~Ok + 2q~h+ k+ I-- q~h + k + Zl. 

In conclusion, the first representat ion in P2t2121 of the 
one-phase s.s. of second rank 4~ = q~h[h - 0 mod (2, 2, 2)] 
is the collection of quintet  invariants 

~/"~- (/Oh "+ q)kRi - -  q)kRj -+" q)tRp - -  (PIRq 

for which 

(a) h + k(Ri - R j) + I(R, - R~) = 0 ,  

(b) the vectors k ( R i - R  j) and i (Rp-Rq)  satisfy one 
of the following conditions:  

(1) k ( R i -  R s ) - 0  mod (2, 2,0), 

i(R v -  Rq) -- 0 mod (0, 2, 2), 

(2) k ( R i -  R j ) -  0 mod (2,2,0) ,  
I (Rp-  Rq) - 0 rood (2, 0, 2),  

(3) k(Ri - Ro) = 0 mod (0, 2, 2), 
l (Rp -  Rq) - 0  mod (2,0,2). 

In conclusion we note that, in terms of the phase-inter- 
relationship principle described in § 3 the realization of 
any 7'1 start ing from a s.s. of first rank involves in (3) 

qb 1 : ~ : A l~Ohl + A2CPh2 + . . .  +Anq)hn, 

¢~2 -~- 7" 1 ~--- - -  A 1Cphlns-- A Zq)h2R! - - . . .  - -  An(PhnRv 
+ (~hRp - -  (PhRq • 

A similar observation holds for the s.s.'s of second rank. 

4. The multipoles 

The results obtained in §3 suggest a simplification in 
the practical use of the phase-interrelat ionship prin- 
ciple. As each u.s.i. 7"~ differs from q~ by a constant  
angle, one can state, for each seminvariant  <b in (3), the 
equivalent 

~, jp 1 • 

Thus, without  any loss of generality, one may consider 
that  in (3) all the ~b's belong to the sets {U}. 

We state then that  the set 

¢~ 1, ¢~2 . . . .  , ¢~n 

constitutes a multipole. Some multipoles have already 
had specific denominat ions:  for example, the quadru-  
poles (four triplet seminvariants),  the hexapoles (six 
triplet invariants), the tripoles (three quartet  invari- 
ants). 

5. The first representation of a u.s.i. 
The basis magnitudes of a u.s.i, or s.s. 

Let q), as given by (5), be a u.s.i.. If the magnitudes Rhi, 
i =  1 .. . .  ,n are known, one is always able the derive a 
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first estimation of 4). h~, h2,..., hn will be called the basis 
vectors and the Rhj the basis magnitudes of ~. 

If the crystal symmetry is higher than triclinic a 
number of symmetry operators may be found in 
favourable cases such that one or more u.s.i., 

hvl = A lOh'l + A2Oh2 + " "  + AnOh'n 
= A x OhlK, + A 20h211t + " "  + AnOhnllv, (9) 

arise in which at least one of the hj vectors does not 
coincide with hi. Because of (7) ~ 1 -  4' is a constant if 
the geometrical form of the structure factor has been 
fixed. The collection of the distinct u.s.i., ~1, obtained 
when R~,Rt,...,R~ vary in the set of the m rotation 
matrices of the actual space group, is defined to be the 
first representation of 4' and will be denoted by { 7-'} 1. 
Any one of the sets 

hx,h'2, ...,h', 

may be defined to be the set ofthe basis vectors of { ~)1 
and the corresponding magnitudes to be the basis 
magnitudes of { ~} x. For example (Giacovazzo, 1976b), 
the first representation in P21/c of the quartet 

(~ = 0234- 3t- 0112  + O 2-1-3 --  (/2539 

contains, in addition to ~, also 

~r'/1 = O234- @ O 1"1-2 @ O213 -- O539 • 

If • is a s.s., it is not possible from only the knowledge 
of the Rhi'S, to obtain information about q,. For ex- 
ample, the estimation of the phase O2h in P1 requires, 
in addition to R2h, that the magnitude Rh is known. In 
the same way, one needs to know in P1 at least Rhl or 
Rh2., in addition to  R h l + h 2  and R h l _ h 2  , in order to 
estimate Ohx + h2 --  Oh 1 - h2" 

This observation may be generalized by observing 
that at least the basis magnitudes of one u.s.i. ~'1 must 
be known in order to derive a first estimate of ~. 

We state that the basis vectors of all the u.s.i, which 
constitute { ~}1 are the basis vectors of the first repre- 
sentation of 4' and that the corresponding magnitudes 
are the basis magnitudes of the first representation of 
q). For example, if 

¢~--'-: O - h l l l s  +h2Rv-JI-Oh1-h2 , 

then R-hlns+hZ~, Rh~-hz and all the magnitudes 
Rhl +k, Rh2 +k for which k(R~- Rs)=0 are basis magni- 
tudes of the first representation of ~. 

6. The cross-magnitudes 

As well known (Schenk, 1973; Hauptman, 1975; Gia- 
covazzo, 1975a) the cross-vectors of the quartet in- 
variant 

¢~ ~-~ Oh1 "~-Oh2 "3t-Oh3-~t-O-h 1 - h 2 - h 3  

may be defined in P1 or P i  as the collection of the 
distinct vectors 

h i+hj ,  (i,j= 1,...,n) (10) 

where n=4.  This definition is quite valid also for the 
quintet invariant (n = 5) 

¢ ~ = O h  1 -+-~h2-{-Oh3-~t-(/0h4 + O - h 1 - h 2 - h 3 - h  4 , 

(see Hauptman & Fortier, 1977). 
For reasons which will become evident in § 14, the set 

of the cross-vectors of the u.s.i. (5) is defined to be the 
collection of the distinct vectors 

mthl + . . .  +m,h ,  (mp=0,.. . ,Ap), (11) 

which do not coincide with any basis vector of • or 
with 0. The corresponding magnitudes are the cross- 
magnitudes of ~. (10) and (11) are not equivalent in 
general. For example 

---- 2 0 h l  + 30h2  -- 02h1 + 3h 2 

has the following cross-magnitudes 

R2h l ,  Rh l  + h2, Rh l  + 3h2, R2h2, R2hl  + 2h2, R3h2, 

R2hl  + 3h2, R2h l  + h2, Rh l  + 2h2 

of which only the first five are obtained according to 
(10). A further generalization is suitable for including 
crystal symmetries of higher order than triclinic. As 
stated in § 5, in fact, one or more combinations of sym- 
metry operators may be found in favourable cases such 
that one or more u.s.i. (9) arise, in which at least one of 
the hj vectors does not coincide with hj. Not all the 
cross-magnitudes of ~1 as given by (9) will coincide 
then with that of ~. However, as ~1 - 4 '  is a constant 
which arises because of translational symmetry, the 
eventual estimation of any ~1 in terms of its basis and 
cross-magnitudes defines also ~. In other words, the 
cross-magnitudes of ~x can be considered in every 
practical respect to be cross-magnitudes of ~. We state 
then that the collection of the distinct vectors, which 
are cross-vectors of at least one u.s.i. ~ i  and do not 
coincide with any basis vectors or with 0, constitute 
the set of the cross-vectors of ~. Or, in accordance with 
§ 5, they constitute the set of the cross-vectors of { ~}1. 
The corresponding magnitudes are the cross-magni- 
tudes of {~'}1. It should be useful to note that these 
definitions are of more than passing interest if one 
thinks that all the cross-vectors of the first representa- 
tion of ~, together with its basis magnitudes, contribute 
to the estimate of 4, [see Giacovazzo (1976b) for the 
quartet invariants]. 

If • is a s.s. of first rank let us denote in (6) 

h~ = h~R~,h2 = h2R,, ..., 
h', = h,,R~,h, + 1 = hRp, h~, + 2 = hRq; 

A , + t = l ,  A , + 2 = - l .  

Of the set of distinct vectors 

mlh'l + . . .  +m,+2h',+2, (mp=0,...,Ap) 

which are obtained when ~1 varies throughout { ~} 1, 
those which do not coincide with any basis vector of 

(or with 0) are the cross-vectors of q,. The corre- 
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sponding magnitudes are the cross-magnitudes of q~. 
A similar definition may be easily stated for the s.s. of 
second rank. 

is also organized in an asymptotic series of powers of 
1/I/N and is a useful (for our purposes) approximation 
of (13). It may be written" 

7. Phasing magnitudes of a u.s.i, or of a s.s. 

The basis and the cross-magnitudes of { 7"} 1 are defined 
to be the phasing magnitudes of {7"}~. The set of the 
phasing magnitudes of {7"}1 will be denoted by {B}t. 
For example, the phasing magnitudes of { 7"}1 for the 
S.S. 

(/) ~-- (~h -3t- (~k "~- (~h + k + 21 

in P i  are the 17 magnitudes [-compare with the 13 
magnitudes given by Hauptman (1976) in the first two 
neighbourhoods] : 

Rh, Rk, Rh+k+ 2,,RI, Rh+l, Rk+l, Rh+k+l, Rh+k, Rh-k, 

R h  + 21, R k  + 21, R h  + 2k + 21, R 2h + k + 21, R21, R 2h + 21, 

R 2k + 21, R 2h + 2k + 21 • 

8. The order of the phase relationship associated 
with a s.s. 

It is the practice of the crystallographer to state that a 
triplet relationship is a phase of order 1/l/N, a quartet 
is a phase relationship of order 1/N, a quintet of order 
1/NI/N, etc. This may be easily justified in a qualitative 
way from the point of view of the joint probability 
distribution methods. Let 

C ( q l , . . . , q n ,  7 " 1 , . . . ,  7"n) 

be the characteristic function of the distribution 

P(R1,...,R,,q~l .... ,q~,) • 

We may write (Giacovazzo, 1977c) 

C = e x p  [_~(q2 + ... + 0,2)] + 1) 
3 v N(V/2 - ' 

where 

r s .  . . w 
Sv = ~ !~..-~W 1 (i~1 COS 7" l ) r ( iq2  COS 7"2) s 

r + s + . . . + w = v  r 

• .. (ion sin 7".)w. 

(12) 

(13) 

(14) 

1 
P(R1,...,Rn, q~,,...,qg,,)= ( 2 ~  exp { - R 2 - . . . - R  2} 

x 1 + ~ - - ~ + ~  r 4 +  + . . . .  (16) 

From (16) one may easily select the terms of the distri- 
bution which chiefly contribute to the estimation of a 
given u.s.i, and recognize their order (in terms of powers 
of 1/I/N ) . These terms will be called the phasing terms 
of the distribution. The minimum order of the phasing 
terms may be considered the order of the phase 
relationship. 

If a u.s.i, is estimated by a joint probability distribu- 
tion which involves its phasing magnitudes one easily 
observes: (a) T3 is the first term of the distribution 
which contributes to the estimation of a triplet; (b) T4 
and T ] are the phasing terms for a quartet; (c) Ts, T3 T4 
and T 3 are the phasing terms for a quintet; etc. 

In conclusion, one may shortly state that with a 
u.s.i. • is associated a phase relationship of order 
1/]/N if q0 is a triplet invariant, of order 1/N if • is a 
quartet invariant, etc. Clearly, the order ofa s.s. • is that 
associated with any u.s.i. 7"1. For example, in P ]  with 
the s.s. cb=tP2h is associated a phase relationship of 
order 1/I/N; with ~/, = ~Pht + h 2 -  ( D h l - h 2  is associated a 
phase relationship of order 1/N; etc. 

Further considerations need some special u.s.i.'s 
which play an important role in this paper. We limit 
ourselves to giving one example: the reader will surely 
be able to generalize it. Let 

and 

= (~h 1 "q- ~Oh2 --  (~0h 1 + h2 

7"2 = (Ph 1 -~- ~h2  - -  (Phi +h2 "3t- (t0k - -  ~ k  

be two u.s.i.'s. 7"2 is formally a quintet; however, its 
value is quite definite by the triplet invariant q~. Of the 
two distribution functions 

2,s .... are the standardized cumulants of the distribu- 
tion. 

By a Gram-Charl ier  expansion of (14) one obtains 

{ S3 
C = e x p  [ - ~ ( 0 ~ + . . . + 0 ~ ) ]  1+ N~/2 

+N &+ + ~  Ss+S3S4+ 

1 ( S~, S~$4 S~'~ } 
"t"- ' ~  S6+ T +$3S5+ T + 24] + " "  ' (15) 

which is a series organized in a stricly asymptotic 
series of powers of N-  t/2. The Fourier transform of(15) 

P(Ehl, Eh2, Ehl + h 2 ) '  

P(Ehl, El, 2, Ehl + h2, Ek, ... cross-magnitudes), 

the first estimates q~ in terms of the three magnitudes 
IEhxl, IEh21, IEhl +h21; the second in terms of IEhll, IEh21, 
IEhl +h21, lEd and of the cross-magnitudes of 7'2. In ac- 
cordance with the phase-interrelationship principle, 
the estimate of q~ is more accurate (in a probabilistic 
sense) when derived from the second than from the 
first distribution. In particular, the second distribution 
will give rise to the same phasing terms of order 1/]/N 
as from the first distribution, but it will be able to cor- 
rect them (in the probabilistic sense) by means of mag- 
nitudes not included in the first distribution. 



Let 

10. The upper representation of a s.s. 

9. The upper representations of a u.s.i. 

q) = A l~Phl + A2tPh2 + ... + A,,tph,, 

be a u.s.i.. Then also 

t P 2 : ~ 1  -+- (~Ok-- (Pk (17) 

is a u.s.i.. In (17) ~Ux s {~u}~ and k is a free vector. We 
denote by {~u}2 the collection of the distinct u.s.i, ob- 
tained by (17) when k varies throughout reciprocal 
space and ~ua throughout {~}a. I//2 will denote the 
generic u.s.i, belonging to {71}2. As any I//2 differs from 
qJ by a constant arising because of the translational 
symmetry, { 7'}2 will be called the representation of the 
second order of q~. 

The set { 71}3, in its turn, is defined to be the collection 
of all the distinct u.s.i. 

~3 = ~2 + qh-qh  = ~Ul + qh,-  qh, + ¢Pl- qh 

obtained when ~u I varies in {7~}x and k and I through- 
out reciprocal space (or, similarly, I//2 throughout { 7 ~} 2 
and ! throughout reciprocal space). The upper repre- 
sentations { ~u}4, { 7'} 5, ... are likewise obtained. 

As we see, a u.s.i, defined in { U}~ has its representa- 
tion in {U}~,{U},.+z,{U}v+4,{U}~+6, etc. 

Fig. 1. A general scheme showing the general sequence of the phasing 
shells for a given u.s.i, or s.s. q~. 

In §3 we have already defined the first representation 
{ 7'} 1 of a s.s. q~ whatever its rank may be. As { 7,} 1 is a 
collection of u.s.i.'s the procedure fixed in §9 enables 
us to define {~u}2,{~}3,{~}4 , etc. In conclusion, one 
may state that a s.s. defined in {S~}~ has its first repre- 
sentations in {U}~+2, its second representation in 
{ U}~+4, etc. A s.s. defined in {S1~}v has its first represen- 
tation in {U}~+,, its second in {U}v+6, etc. 

1 I. Phasing magnitudes of the upper representation 
of • 

The definitions given in the §§ 5, 6, 7 enable us to define 
easily the basis and the cross-reflexions of any 

I//n ---~ t/J 1 -~-(pk-  (pk-+-... -~- (pl -- (pl . 

So the phasing magnitudes of the nth representation of 
q~ are defined to be all the magnitudes which are phas- 
ing magnitudes of at least one of the u.s.i.'s ~,. The set 
of the phasing magnitudes of {T}. will be denoted by 
{B}.. 

12. Phasing shells 

With any representation { 7~}v of q~ a real non-negative 
conditional probability function 

P(~I{B}O (18) 

may in principle be associated, which is able to estimate 
if the phasing magnitudes of the vth representation 

are known. As 

{B1} c {B}2 ~ {B}3 . . . ,  (19) 

the phase-interrelationship principle assures that (18) 
is able to give a more accurate estimate (in a probabili- 
stic sense) of q, than 

P(q~[ {B},) 

where r < v. 
Furthermore, (19) suggests that the sample space 

{ W} may be arranged for a given q~ in a sequence of 
phasing shell, each shell a subset of the succeeding one, 
with the property that q~ may be estimated in terms of 
the magnitudes constituting any shell. 

In accordance with this purpose, we state that {B}I 
constitutes the first phasing shell. The magnitudes in 
{B}2 which are not in {B}I belong to the second 
phasing shell. The magnitudes in {B}3 which do not 
belong to  {B}2 constitute the third phasing shell, etc. 

A general representative scheme is shown in Fig. 1. 
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Fig. 2. The sequence of the first four phasing shells in PI or P / f o r  
the structure invariant q~ = ~Oht + ~Ph2 + ~Oh3. The reciprocal vectors 
hl,h2,h3 satisfy ht +h2 +h3 =0. 
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In Figs. 2-12 the scheme is explained for some impor- 
tant u.s.i, and s.s.. The reader will surely be able to 
derive explicit sequences of phasing shells for other 
u.s.i, or s.s.. 

13. The estimation of • via its upper representations 

Each T, may be estimated via its phasing magnitudes. 
As T , -  ¢ is a constant, the estimation of T,  gives also 
an estimate of q). As the set of the phasing magnitudes 
of any T, includes that of q~, the estimation of q) in 
terms of the phasing magnitudes of T,  is more accurate 

Fig. 3. The sequence of the first three phasing shells in any space 
group of order m for the structure invariant q)= ~0hl + ~0h2 + ~063. 
The reciprocal vectors hl,hz,h3 satisfy hi +h2 +h3 =0 ,  p and r are 
arbitrary vectors. Ehl ±pR~, Ehl ±pRj . . . .  e t c .  represent the sets of 
magnitudes which arise when i , j  . . . .  vary from 1 to m. 

Fig. 4. The sequence of the first three phasing shells in PI and P ]  for 
the structure invariant 4) = ~ohx + ~oh2 + ~Oh3 + ~Oh4. The reciprocal 
vectors hl,h2,h3,h4 satisfy hi +hz  +ha  + h 4 = 0 ;  the vectors p and 
r are arbitrary. 

Fig. 5. Haup tman ' s  sequence of nested ne ighbourhoods  for the 
structure invariant 4, = q~hl + ¢Ph2, + ~0h3 + ~0h4- The reciprocal vec- 
tors hl,hz, h3,h4 satisfy h~ +h2 +113 +h4  = 0 ;  p and r are arbitrary. 

_ IEh.R~ ~.R,I \ 

Fig. 6. The sequence of the first two phasing shells in any space 
group of order m for the structure invariant ~ = ~oh i + ~oh2 + ~Oh3 + 
~0h4. The reciprocal vectors h 1, h2, h3, h4 satisfy h 1 + h2 + h3 + h4 = 0, 
the vector p is arbitrary. Ri, Rj, R,,Rv are rotat ion matrices of the 
space group for which h l R i + h 2 R j + h 3 R , + h 4 R , . = 0 ,  R, is an ar- 
bitrary rotat ion matrix of the space group. 

(in the probabilistic sense) than that expressible in 
terms of the sole phasing magnitudes of ¢. The chief 
advantage of the concept of the upper representations 
is that (b may be estimated by collecting the contribu- 
tions which arise from any element of { T}, and from 
any { T},. 

For example, if one were to estimate in P1 q)= q~hl + 
q)h2--q~hl +h2 via its second representation, one could 
associate with any 

I//2 = (t0h 1 "-]- q)h2 - -  q)h I + h2 "-]- q)k - -  q)k 

the joint probability distribution function 
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P(Eh 1, Eh2,  Eh  1 + h2, Ek, Eh 1 + k, Eh  2 _+ k, Eh  I + h2 -+ k)-  (20) 

Of the phasing magnitudes which appear in (20), the 
last six are the cross-magnitudes of 7"2. As k is a free 
vector, a figure of seven modes arises from (20) which, 
when k varies, sweeps out all reciprocal space remain- 
ing parallel to itself. In general we conclude that each 
representation {~}. with n >  1 may be described by 

means of a geometrical figure which sweeps out the 
reciprocal space by means of one or more reciprocal 
vectors. The greater the order of the representation, 
the greater the number of vertices of the figure and the 
number of degrees of freedom of the sweeping. 

This suggests a further advantage of the idea of the 
upper representations. In fact, when • is estimated by 
involving its upper representations, a large number of 

I 

IEh,.I / 

Fig. 7. The first three phasing shells in P1 for the structure seminvar- 
iant ~o2h. The reciprocal vectors p and r are arbitrary. 

Fig. 8. The first two phasing shells for the structure seminvariant 
tpn = ~0ha-a~j. The reciprocal vector p is arbitrary. The reciprocal 
vector h is arbitrary on condit ion that h ( I - R ~ ) = H .  Eh±pai, 
Ehas ± pRi, E~t~_ ,~  ±pai represent the sets of magnitudes which arise 
when i varies from 1 to m (m is the order of the space group). 

t 
Fig. 9. The first two phasing shells for the structure seminvariant 

¢'i = ~o~ + k -  ~0h-k in Pi .  The reciprocal vector p is arbitrary. 

Fig. 10. The first phasing shell for the structure seminvariant  
¢'=~PblR~+h2av--~Ohl +h2" The reciprocal vector k is arbitrary on 
condit ion that k ( R v -  R~)= 0. 

Fig. 11. The first phasing shell of the structure seminvariant 
= ~oh + ~Ok + ~O~ in P L  

Fig. 12. The first phasing shell of the structure seminvariant 
• = tph + tpk + tpl + tp,. in P L  
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magnitudes is checked so that the estimate of 4 is less 
sensitive to the troubles which arise when the condi- 
tions concerning the rational independence between 
the atomic coordinates are not fulfilled. Furthermore, 
the method may take noticeable advantage of the 
actual crystal symmetry. Referring for example to the 
case of the triplet invariant ~ = ( P h l - ~ - ( P h 2 - 1 - f ~ h 3  in a 
space group of order m, we observe that any t/' 2 may 
be estimated via the phasing magnitudes 

Rhl,Rh2,Rh3,Rk, Rhl +kRp, Rh2 +kRp, Rh3 +kRp, p----- 1,...,m. 

Their number increases with m, which increases also 
the probability that any ~2 is estimated with good 
accuracy. In conclusion, the estimation of 4 via its 
second representation may be carried out by restricting 
k to an asymmetrical region of reciprocal space, on 
condition that all the cross-magnitudes are taken into 
account. This conclusion is easily generalizable to 
other u.s.i.'s or s.s.'s and to representations of higher 
order. 

However, the reader has surely become aware that 
the calculation of the probability function (17) when v 
is large may be a difficult task for the crystallographer. 
Thus it may be helpful to calculate probability func- 
tions of type 

P(41{R}~), 

where {R}v is a suitable subset of {B}~. From the point 
of view of the phase-interrelationship principle this 
procedure may be so justified. The phasing magnitudes 
of any representation of 4 enjoy the important quality 
that they rise to a number of multipoles each contri- 
buting to the estimate of q, (see also § 14). {R}~ is an 
useful subset if P(4I{R}v)is able to exploit at least one 
multipole contributing to the estimate of 4. For ex- 
ample, if one wishes to estimate 4 = ~0hl + ~0h2 -- ~0hl ÷h2 
by {~}2, the distribution 

P(Ehl,Eh2, Ehl+h2,Ek, Ehl+k, Ehl+h2+k) (21) 

may be used (Giacovazzo, 1976a) instead of(20). In fact 
(21) is able to exploit the three (not independent) 
tripoles 

4 1 ~--- (I) = (/Oh 1 "~- ('Ph2 - -  q)h I + h2 

(D 2 = - - ( p h  1 - - q ) h 2  - -  q)k "-]- (.~hl + h 2 + k  

¢~)3 =(~0h I + h  2 "3t- (Pk - -  q)h I + h 2 + k  , (22) 

41 = I~) 

44 = - ¢Phl + ~Phl +h2 + ¢Phl +k -- qghl +h2 +k 

(I)5 = - -  ('/0h2 - -  (Phi  +k "3t- q)h 1 + h  2 + k ,  (23) 

4 1 = 4  

4 6  = - -  ('Dh2 + (/Oh I + h 2  "3t- (t0k - -  q ) h  I + k 

4 7  ----- - - ( P h l  - - ( P k l  "-t- q )h l  + k ,  (24) 

each giving information on 4. It may be noted that 
only two of the three cross-reflexions of 42, 44, 4 6  a r e  

contained in (21). Since a good estimation of the quar- 
tets can improve the estimation of 4, more promising 
than (21) seems to be the study of a distribution which 
is able to exploit the knowledge of all three cross- 
magnitudes for at least one quartet. That is the case 
of the distribution 

P(Ehl,Eh2,Ehl + h 2 ,  E k ,  E h l  + k, E h l  + h 2  +k ,  E h 2  + k )  (25) 

which exploits, besides (22), (23), (24), the following (not 
independent) tripoles 

4 1 = 4  

48 = - ~0h2 + ¢Ph 1 + h2 + ~0h2 + k -- ~0h 1 + h2 + k 

49 = --~0hl -- ~0h2 +k + ~Phl +h2+k, 

4 1 = 4  

t ~ l O  -~- - -  ( / ) h l  "3L" (~hl  + h 2  -lt" q ) k - -  q)h2 + k  

4 1  1 = - - ( ' Ph  2 - -  ('~k "JC- (/0h2 + k • 

Two of the cross-magnitudes of 4 4 , 4 6 , 4 8 , 4 1 0  and all 
three cross-magnitudes of 42 are contained in (25). 
This procedure may be developed as far as to exploit 
all the tripoles associated with (20). 

14. The order of a muitipole 

The order of the multipole ~1 ,~2 , . . . ,4 ,  with respect 
to 41 is the product of the orders of the phase rela- 
tionships associated with 42, 43, . . ., 4,.  For example, 
(22) is a multipole of order 1/NVN for 41. 

The lower the order of the multipole for ~1, the more 
effective (in a probabilistic sense) the magnitudes in- 
volved in the multipole will be in defining ~1. The 
multipoles of the lowest order for 41 (i.e. of the same 
order as the phase relationship associated with 41) are 
those carried out by means of the cross-reflexions of 
41. For example, the tripole 

(/)1 = ( / ) h  I "3L (-Ph2 "3t- (-Ph3 - - q ) h  1 + h 2 + h  3 

qD 2 = - -  (ph 2 - -  (/0h3 + (Ph 2 + h  3 

(~)3 = - -  ('Ph 1 - -  (-/0h 2 + h  3 "3t- (Phi  + h2 + h 3  

is of order 1/N for 41, just as the phase relationship 
associated with 41 (Eh2 +h3 is a cross-reflexion of q'0. 
This property may be useful in order to define the 
cross magnitudes of the u.s.i. 4 given by (5). We note 
in fact, that the tripole 

¢2151 = A lCph 1 q - A 2 ( , 0 h 2  " t - . . .  "t-Anq)hn 

42 = - m l  (/)h 1 - -  m26,0h2 - - . . .  - -  mnq)hn + q ) m l h  1 + ... + mnhn 

(~3 = - -  ( A  1 - -  m ) ( p h  I - - . . .  - -  (An -- mn)~Ohn 
- -  (-Pro 1 h I + ... + mnhn 

with mi = 0,..., Ai, is for 4 just of the same order as the 
phase relationship associated with 41. Thus any 

g m l h l  + ... +mnhn 
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is a cross-reflexion of ¢ (provided it does not coincide 
with 0 or with some basis vector), when the integers 
mi vary between 0 and Ai. 

Thus, Rha + h 2 + h 3 is a cross-magnitude for the sextet 
invariant because it gives rise to the tripole 

(I) 1 : ( P h  1 "]- ( p h 2  "-~" (ph3  -~- ( p h 4  -~  (Ph5 - - ( p h i  + h 2  + h 3  + h 4 - + h 5  

t ~ 2 = ( P h i + h 2 + h 3 - - ( p h l - - ( p h 2 - - ( p h 3  

~ 3  - -  - -  (ph  1 + h2  + h3  - -  (ph4. - -  ( p h 5  + (ph  I + h2  + h3  + h 4  + h5  

which is of order 1 / N  2 for q~t- 

15. A comparison with the nested-neighbourhoods 
theory 

The main purpose of the nested-neighbourhoods 
theory, as well as of our method of the upper represen- 
tations, is that of arranging the sample space { W} in 
a sequence of sets, each set being a subset of the suc- 
ceeding one, with the property that 4~ may be estimated 
in terms of the magnitudes constituting any set. The 
two methods have different backgrounds" in general 
they suggest different approachs to the solution of the 
phase problem. It therefore comes as no surprise that 
the two methods do not arrange {W} in identical 
sequences of sets. 

However, in spite of the different backgrounds, the 
two methods must have several points of connexion. 
Illuminating in this sense may be the comparison of 
the sequence in P1 of the phasing shells of the quartet 
invariant • = (ph~ + (PhZ + (ph3 + q~h4, described in Fig. 4 
with the nested-neighbourhoods sequence given by 
Hauptman (1977a) and shown in our notation in Fig. 5. 
Besides the trivial observation that the magnitudes in 
the two first neighbourhoods coincide with those in 
the first phasing shell, we point out that any neighbour- 
hood of higher order is an unsymmetrical (regarding 
hl,h2,h3,h4) subset of a corresponding phasing shell. 
Suitably, Hauptman noticed that Fig. 2 represents one 
of the possible sequences of nested neighbourhoods of 
~b. Several other examples of this type may be derived 
if one compares the sequences of neighbourhoods 
given by Hauptman for some u.s.i, or s.s. with the 
corresponding sequences of phasing shells given in this 
paper. For instance, 17 and 48 phasing magnitudes are 
in the first phasing shells of the three-phase s.s. 

- (ph + (pk + (P, and of the four-phase s.s. 4) = (ph + (pk + 
(P,+(Pm in P1 respectively (see Figs. l l ,  12). The first 
two neighbourhoods given by Hauptman (1976) for 
the same s.s. contain 13 and 22 magnitudes respectively. 

16. A branch: the method of the complementary 
invariants 

Until now we have shown that a u.s.i, or s.s. q, may be 
estimated v ia  one or more u.s.i. T1 ~ { T} 1, one or more 
T26  {T}2, ... e tc . ,  where 

tP x = ~+(pp- (pp  

'1'2 = T 1 + (P, - (P,, e t c .  

An obvious variant may be that of associating with q~ 
one or more u.s.i, or s.s. q):, ~g,..., ~q such that 

q)' = ~b + cb: + ~g + . . .  + 4~q (26) 

is a u.s.i.. ¢ '  is not an element of an upper representa- 
tion of ¢ because ¢ ' - ~ b  is not a constant which arises 
because of translational symmetry. We state that 4,' is a 
complementary u.s.i, of ~b with respect to ~: ,  q~g, 4~q. 
If ~b', ~b:, q~g . . . .  , q,q are estimated v ia  their representa- 
tions, q, is in consequence evaluated. From a math- 
ematical point of view the estimation of cb requires 
that from the probability distribution 

P ( cI), cI) : ,  cP , ,  . . . , ~ q, CI)' l 't R I } 

one arrives at 

P(  gp l cI) f , cI)~, . . ., CI)q, ¢ ' ,  { R } ) . 

The method seems rather promising since one or more 
reciprocal vectors may vary throughout reciprocal 
space, so giving rise, for a fixed ¢, to numerous collec- 
tions Cf . . . .  , ~q, q~'. 

The first applications of this method are encourag- 
ing. Giacovazzo (1975b) associated in P]- with the s.s. 
(]):(P2h the u.s.i. ¢:=(ph+(pk--(ph+k SO that 

q)' = (p2h- (ph + (pk-- (ph+ k • 

AS (ph = --~Ph in P1, the estimate of any q)' (k is a free 
vector) v ia  the six magnitudes /~2h, J]~h, Rk, Rh±k,l~2h+k 
and of cbr v ia  R h ,  R k ,  R h +  k allows one to evaluate q). 
More recently, Sheldrick (1976) extended the idea to 
any space group. Giacovazzo (1977a) and Burla, Poli- 
dori, Nunzi, Cascarano & Giacovazzo (1977) estimate 
one and two-phase seminvariants in P1 by means of 
quintet complementary invariants. 

It should be useful to emphasize that the methods 
of representations and complementary invariants are 
strictly related to one another: in particular, they work 
on the same sets of reflexions. For example, if one 
wishes to estimate (p2h in P]- by means of quartet com- 
plementary invariants, the following quartets should 
be evaluated" 

(1~'1 = (pZh  - -  (ph -Jl- (pk - -  (ph + k ,  

qD'2 =" ( P 2 h  - -  (Ph - -  (Pk - -  (ph  - k "  

This may be performed just by means of the second 
phasing shell of q~zh (see Fig. 7). 

If (p2h is estimated in P1 by quintet complementary 
invariants, the following quintets should be evaluated 

¢~)1 : ( P 2 h  - -  (ph  -~- (pk  -Jr- (Pl - -  (ph  + k + ! , 

t~)' 2 ~-- ( p 2 h  - -  (ph  - -  (pk - -  (pi  - -  ( p h _  k _ i , 

(~'3 : ( p 2 h  - -  (ph @ (/Ok - -  (Pl - -  (ph  + k - I ,  

¢~)4- : ( p 2 h  - -  (ph  - -  (pk  '-{'- ( P l -  ( p h -  k + I • 

This may be performed just by means of the third 
phasing shell of q~2h (see Fig. 7). 
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As a further example, the two-phase seminvariant 
~0h+k + ~0h-k may be estimated in P]- by means of the 
following quintet complementary invariants 

¢JD'I : (~h  + k -Jr- (/Oh - k - -  (-Dh - -  (-Dp - -  (/gh - p ,  

¢~'2 = (/~h + k ~ (/Oh - k - -  (tOh "3t- (Dp - -  (Dh + p ,  

(/'3 = ~Ph + k -- ~Ph- k -- ~Pk + ~Pp -- ~Pk + p, 

q"4 = ~Ph + k -- ~Ph- k -- ~Pk -- ~Pp -- ~Pk- p, 

which require that the magnitudes of the second phas- 
ing shell are known (see Fig. 9). 

However, even if the methods of representations and 
complementary invariants work on the same sets of 
reflexions, they deal with them in different ways. In the 
complementary-invariants method each ~'  is con- 
sidered independent of the others. This condition is 
not assumed in the method of representations. Further- 
more, we can note that the method of complementary 
invariants exploits in P1 the second phasing shell of 
~P2h in order to use phase relationships of order 1IN 
(quartets), the third phasing shell in order to use phase 
relationships of order 1/NVN (quintets), etc. On the 
other hand the method of representations exploits the 
second phasing shell of ~P2h in order to calculate phase 
relationships of order 1/N]/N, the third phasing shell 
in order to calculate phase relationships of order 
1/N2I/N, etc. Similar considerations hold for other 
S . S . ' S  o r  u . s . i . ' s .  

17. Conclusions 

The theory of representations of a u.s.i, or a s.s. 4), al- 
lows the arrangement of the sample space {W} in 
subsets (i.e. phasing shells), each a subset of the 
succeeding one, such that 4) can be estimated in terms 
of the magnitudes belonging to the phasing shell. The 
'nested-neighbourhoods principle' formulated by 
Hauptman is also able to fix sequences of sets of 
magnitudes. We have shown that it is a consequence of 
the more general phase-interrelationships principle 
stated here which, joined with the theory of representa- 
tions, is able to give general sequences of magnitudes. 

This work was supported by the Consiglio Nazionale 
delle Ricerche (grant No. 75.1066.05.115.4593). 

A P P E N D I X  

Here are summarized the results of our  analysis on the 
rank of the s.s.'s in all the primitive space groups. Since 
there is the set of rotation matrices which fixes the rank 
of a s.s., the results for non-primitive space groups are 
easily derivable. We have preferred to describe our 
results in terms of Haup tman-Kar le  groups (see 
Giacovazzo, 1975b for the notation) because of their 
large use in the direct procedures for phase solution. 
The following statements hold. (1) All the s.s.'s in the 
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centrosymmetric space groups are of first rank. (2) All 
the s.s.'s in the following Haup tman-Kar l e  groups: 

(h,k,l)P(2,0,2); (h,k,l)P(O,2,0); (h,k,l)P(2,2,0); 
(h+k,I)P(2,0); (h-k,l)P(3,0); (h+k +/)P(O); (A.1) 

are of first rank. 
For each Haup tman-Kar l e  group which is not in 

(A. 1) a list of symmetry classes in which s.s.'s of second 
rank occur is given below. For  each symmetry class in 
the list, the algebraic conditions characterizing the 
s.s.'s of first rank are given. Of course the conditions 
hold for all the space groups in the H - K  group belong- 
ing to that symmetry class. 

(h,k,l)P(2,2,2) 
(h, k, 1) = 0 mod (2, 2, O) or (2, O, 2) or (0, 2, 2). 

(h + k, I)P(2, 2) - symmetry class 422 
(h, k, 1)-- 0 mod (2, 2, O) or (2, O, 2) or (0, 2, 2) 
(h + k, l) = 0 rood (0, 2) or (2, 0). 

(h - k, I)P(3, 2) - symmetry class 32 
(h-k , l )=Omod(3,0)  
(h - k, l) or (2h + k, l) or (h + 2k, l) = 0 mod (0, 2). 

IP(O) - symmetry class 3m 
(h-k , l )=Omod(3,0)  
(h + k, l) - 0 mod (0, 0) 
(h,k, l )=0  mod (1,0,0) or (0,1,0). 

IP(2) - symmetry class 32 
(h-k , l )=Omod(3,0)  
(h + k, l) = 0 mod (0, 2) 
(h,k,l)=-O mod (1,0,2) or (0,1,2). 

- symmetry class 622 
(h + k,l)=O mod (0,2) 
(h,k,l)=-O mod (1,0,2) or (0,1,2) 
(2h + k, l) or (h + 2k, l) - 0 mod (0, 2) 
(h,k,l)=-O mod (1,1,0). 

- symmetry class -6m2 
(h - k, l) - 0 mod (3, 2) 
(h + k, 1)-  0 mod (0, 2) 
(h,k,l)=-O mod (1,0,2) or (0,1,2). 

(h + k + I)P(2) - symmetry class 32 (rhombohedral lattice) 
(h - k, l) or (h - l, k) or (k - l, h)-- 0 mod (0, 2) 
(h + k + l)-- 0 rood (0). 

symmetry class 23 
(h, k, l) = 0 mod (0, 2, 2) or (2, 0, 2) or (2, 2, 0) 
(h 4- k + l ) - 0  mod (0). 

symmetry class 432 

(h ___ k, l) or (h + l, k) or (k + l, h) = 0 mod (2, 0) or 
(0,2) 

(h + k + 1) = 0 mod (0). 
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- symmetry class 7~3m 
(h + k, l) or (h + l, k) or (k + l, h) = 0 mod (2, 2) 
(h, k, l) = 0 mod (0, 2, 2) or (2, 0, 2) or (2, 2, 0) 
(h _+ k 4-/)=0 mod (0). 
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A probabilistic theory is described which is able to estimate in P I  the signs of the quintet invariants. An 
investigation is carried out on the use of special quintets in order to estimate one and two-phase sem- 
invariants by means of the complementary-invariants method. 

1.1. Introduction 

Let hi, h2, h3, h4, h5 be reciprocal vectors for which 

h~ + h 2 + h a W h 4 + h s = 0 .  

Then the linear combination of phases 

(P = (//)hi -}- (Ph2 + (Ph3 "3!- (Ph4 + (Ph 5 (1) 

is a structure invariant. The theory of representations 
(Giacovazzo, 1977) states that q~ may be evaluated in 
P1 or P-f via its first phasing shell by means of the 15 
magnitudes 

Emlhl +...rash 5 (mp =0,1). (2) 

Schenk (1975) spoke of quintets at the Tenth Interna- 
tional Congress of Crystallography. The main result 
presented was a linear trend of tp versus the sum of the 
cross-magnitudes. At the Buffalo Symposium on Direct 
Methods more detailed analysis was presented by 
Schenk (1976) by a semi-empirical method and by 
Fortier & Hauptman (1976) with the theory of the 
joint probability distribution functions. More recently, 
Fortier & Hauptman (1977) described a probabilistic 
approach in P1 which is able to predict the sign of a 
quintet by means of a formula which involves a summa- 
tion over 1024 contributions. This paper describes a 
probabilistic approach to quintets in P i  which leads 
to formulae more tractable than Fortier & Haupt- 

man's. Special quintets are also studied which may 
allow good estimates of one and two-phase structure 
seminvariants. 

1.2. The mathematical approach 

The method to be described requires the derivation of 
a variety of conditional probability distributions. If 
we denote by P(E1, E2, ..., E,) the joint probability 
function of n normalized structure factors, its character- 
istic function may be expanded in a Gram-Charlier 
series: 

C(u~, ..., u,) = exp [--  }(u~ + ... + u~)] 
x [-1 + S3/t 3/2 + (S4/t 2 + $2/2t 3) 
+(S5/ t  5/2 +$3S4 / t  7/2 +$3/6t9/2)+ . . . ] ,  (3) 

where ui, i=  1,...,n are carrying variables associated 
with Ei, t is the number of independent atoms in the 
unit cell, 

r s  w S~=t ~ - - " "  (iux)r(iu2)~...(iu,) w, 
r ! s ! ] . iw  v r + S + . . . + W = V  

and 
g r s . . .  ~,v 

'~rs...w = m(r+s+ ... +w)/2" 

K,~ . . . .  are the cumulants of the distribution and m 
is the order of the space group. P(E1, E2, ..., E,) is the 
Fourier transform of (3). 


